

Programas de Asignatura

Fabricación Digital

A. Antecedentes Generales

1.	Unidad Académica	Facultad de Diseño					
2.	Carrera	Diseño					
3.	Código de la asignatura	DIAG311					
4.	Ubicación en la malla	5º semestre, 3º año					
5.	Créditos	6					
6.	Tipo de asignatura	Х	Obligatorio		Electivo		Optativo
7.	Duración		Bimestral	Х	Semestral		Anual
8.	Módulos semanales		Teóricos	2	Prácticos	1	Ayudantía
9.	Horas académicas	68	Hrs. de Clase		34	Hrs. de Ayudantía	
10.	Pre-requisito	Representación Gráfica					
		Programación					

Competencias de la Asignatura

	Competencias Genéricas	Competencias de Innovación	Competencias de Investigación		Competencias Tecnológicas
	Ética	Creatividad	Observación y Conceptualización		Representación y Visualización
	Emprendimiento y Liderazgo	Empatía	Dominio de herramientas Metodológicas	x	Dominio de herramientas Tecnológicas y Procesos de Producción
	Responsabilidad Pública	Trabajo en Equipo	Jerarquización de la Información	х	Dominio y Uso de Materiales
	Autonomía	Persuasión	Juicio Crítico		
X	Eficiencia	Pensamiento Estratégico			
	Visión Global				
	Visión Analítica				
	Comunicación				

B. Aporte al Perfil de Egreso

Este curso explora las posibilidades constructivas y las consecuencias hacia el futuro de la fabricación digital. El estudiante entiende el impacto que tienen estas tecnologías en la proyección de la disciplina del diseño y la fabricación de productos. Por medio de la utilización de software especializado y herramientas asistidas por computador, el estudiante experimenta las distintas tecnologías involucradas, así como también las posibilidades formales y productivas asociadas a las tecnologías CAD-CAM, y cómo estas herramientas establecen un vínculo directo entre diseño e innovación.

Editado el 6/10/17 1 / 5

Esta asignatura se ubica en el ciclo de licenciatura, dentro de la línea de representación y medios, tributando a la competencia genérica de autonomía, así como a las específicas de Dominio de Herramientas Tecnológicas y Procesos de Producción y Dominio y Uso de Materiales.

C. Competencias y Resultados de Aprendizaje que desarrolla la asignatura

COMPETENCIAS GENÉRICAS	RESULTADOS DE APRENDIZAJE GENERALES		
Eficiencia	 Ejecuta las diferentes etapas que componen la fabricación digital utilizando el software apropiado. 		
COMPETENCIAS ESPECÍFICAS	 Organiza de manera adecuada los requerimientos que componen el proceso de fabricación digital por medio de la clasificación de las diferentes etapas desde el diseño hasta la fabricación. 		
Dominio de Herramientas Tecnológicas y Procesos de Producción	 Maneja de forma adecuada y sistemática las maquinas controladas numéricamente, determinando de forma eficaz los tipos de herramientas necesarias para un determinado proceso de fabricación. 		
Dominio y Uso de Materiales	Domina diferentes materiales prediciendo su comportamiento según el tipo de proceso de fabricación digital.		

D. Unidades de Contenidos y Resultados de Aprendizaje

UNIDADES DE CONTENIDOS	COMPETENCIA	RESULTADOS DE APRENDIZAJE
UNIDAD I: INTRODUCCIÓN 1.1. Introducción a la Fabricación Digital, impacto y oportunidades para el diseño: Procesos involucrados y usos comunes. 1.2. Definición de "CAD/CAM" y procesos involucrados. 1.3. Tipologías de manufactura digital y	 Eficiencia Dominio y uso de materiales. Dominio de Herramientas Tecnológicas y Procesos de Producción 	 Domina léxico técnico relativo al proceso de fabricación digital de forma oral y escrita en el desarrollo de informes y presentaciones. Identifica diferentes procesos que intervienen en el proceso de fabricación digital. Selecciona entre diferentes tipos de software disponibles, según sus aplicaciones y posibilidades técnicas.
maquinaria CNC involucradas en diferentes procesos de fabricación digital. 1.4. Lenguaje G-Code, una visión simple. 1.5. Estándares de Información de Manufactura. 1.6. Análisis de procesos constructivos. 1.7. Coordinación de etapas en el diseño y fabricación de un objeto.		Caracteriza las distintas tipologías de maquinaria CNC y sus procesos asociados mediante la observación y utilización de equipos.

Editado el 6/10/17 2 / 5

UNIDAD II: MECANIZADO, HERRAMIENTAS Y MATERIALES EN LA FABRICACIÓN DIGITAL 2.1. Materiales aptos para la fabricación digital. 2.2. Tipos de mecanizados.	 Eficiencia Dominio y uso de materiales. Dominio de Herramientas tecnológicas y procesos de producción 	 Identifica materiales aptos para la fabricación digital, así como el mecanizado correcto para la fabricación mediante la observación y utilización de equipos. Aplica las propiedades físicas de distintos tipos de materiales disponibles para la construcción de un prototipo. Adapta medidas del diseño en función de las dimensiones y formatos comerciales de los materiales por medio de la fabricación de un prototipo.
UNIDAD III: DISEÑO DIGITAL 3.1. Diseño Paramétrico y modular en procesos productivos. 3.2. Calibración de diseños digitales (Tolerancias)	Herramientas tecnológicas y procesos de producción	Utiliza las herramientas de diseño paramétrico y modular en el proceso de fabricación.
UNIDAD IV: TOLERANCIAS Y NESTING 4.1. Tolerancias en diferentes herramientas CNC (Primer paso en la optimización de encajes) 4.2. Medición y cubicación 4.3. Optimización del material	 Eficiencia Dominio y uso de materiales. Herramientas tecnológicas y procesos de producción 	 Utiliza las herramientas según las características de los materiales y del proceso de fabricación en el desarrollo del prototipo. Identifica las tolerancias en distintos tipos de máquinas y herramientas, las que aplica en sus ejercicios. Optimiza el material considerando sus parámetros mediante la organización de las piezas en un plano que conforman el objeto.
UNIDAD V: UNIONES Y ENSAMBLES 5.1. Tipologías de uniones y ensambles para la fabricación digital 5.2. Racionalización de objetos y estructuras complejas para el mecanizado CNC."	 Eficiencia Dominio y uso de materiales. Herramientas tecnológicas y procesos de producción 	 Identifica propiedades de las máquinas, considerando su comportamiento en diferentes materiales, utilizando diversos equipos CNC. Utiliza figuras para unión y ensamble en ejercicios prácticos

Editado el 6/10/17 3 / 5

E. Estrategias de Enseñanza

En la formación basada en competencias el proceso de enseñanza-aprendizaje se enfoca en el desarrollo de conocimientos, habilidades y destrezas, y en su aplicación para la resolución de problemas similares a los que un profesional debe enfrentar en el mundo del trabajo.

Requiere:

- Lograr profundidad en el conocimiento
- Promover pensamiento de orden superior, como análisis, síntesis, aplicación, evaluación y resolución de problemas.
- Diseñar experiencias de aprendizaje activo (práctico), contextualizado (enfrentar situaciones reales), social (en interacción con otros) y reflexivo (evaluar el propio aprendizaje y generar estrategias para mejorar).
- Implementar estrategias de enseñanza variadas y auténticas (similares a las que se encuentran en el mundo del trabajo).

Diseño UDD ha definido un conjunto de estrategias de enseñanza que ofrecen una amplia gama de posibilidades para promover aprendizajes efectivos y relevantes en los estudiantes. Para esta asignatura se sugiere dar prioridad a las siguientes estrategias:

- Clase expositiva
- Uso de imágenes y análisis formal
- Estudio de casos
- Ejercicio práctico
- Bitácora

F. Estrategias de Evaluación

La evaluación debe estar presente a lo largo de todo el semestre o bimestre, ya sea para identificar los conocimientos previos de los alumnos (evaluación diagnóstica), monitorear la efectividad del proceso de enseñanza-aprendizaje (evaluación formativa), verificar el nivel de logro de los resultados de aprendizaje y calificar el desempeño de los estudiantes (evaluación sumativa).

- Los **procedimientos de evaluación** permiten evidenciar el desempeño de los alumnos a través de la elaboración de distintos tipos de documentos o productos (textos escritos, presentaciones orales, pruebas, propuestas formales en soportes bi y tridimensionales, audiovisuales, desarrollo de proyectos, etc.). El profesor debe privilegiar aquellos que permitan integrar conocimientos y aplicarlos en función de resolver situaciones auténticas (similares a las que aborda un diseñador profesional).
 - Se deben utilizar al menos 2 procedimientos de evaluación diferentes a lo largo del curso, de manera de abordar diferentes complejidades y profundidades de conocimiento.
- Los **instrumentos de evaluación** permiten analizar la producción de los alumnos, mediante criterios claros, transparentes y objetivos; verificar en qué medida se cumplen los resultados de aprendizaje y cuantificar el nivel de logro a través de un puntaje y una nota. Dependiendo del tipo de contenido, se sugiere utilizar: listas de cotejo, escala de valoración o rúbrica. El instrumento de evaluación debe ser entregado al alumno junto con los criterios de evaluación, a lo menos un mes antes de su aplicación.

Instancias de evaluación:

Se deberán realizar al menos 4 evaluaciones calificadas durante el semestre, que en su totalidad podrán:

Editado el 6/10/17 4 / 5

- Sumar el 100% de la Nota de Presentación a Examen, donde a su vez ésta equivaldrá al 70% de la nota final de la asignatura. Dejando 30% para el Examen Final.
- Sumar el 70% como promedio de la asignatura previo al Examen, dejando 30% para el Examen Final.

Ninguna evaluación por sí sola podrá ponderar más del 25% de la nota total del curso.

Examen Final:

Se realizará un examen final, con una ponderación del 30% de la nota total del curso. La fecha de esta evaluación será fijada por el Calendario Académico de la Facultad de forma semestral.

A criterio de la Facultad de Diseño, se podrán establecer comisiones revisoras para calificar el examen final. En dicho caso, las calificaciones emitidas por estas comisiones equivaldrá al 70% de la nota del examen y el 30% restante será determinado por el o los profesores del curso.

G. Recursos de Aprendizaje

Bibliografía Obligatoria:

- Achim Menges y Sean Ahlquist. (2011) Computational design thinking. Chichester: Wiley.
- Asterios Agkathidis. (2010) Digital manufacturing in design and architecture. Amsterdam: BIS.
- Christopher Beorkrem. (2013) Material strategies in digital fabrication. New York: Routledge.
- Iwamoto, Lisa. (2009) Digital fabrications: architectural and material techniques. New York: Princeton Architectural Press

Bibliografía Complementaria:

- Hod Lipson, Melba Kurman. (2013) Fabricated: the new world of 3D printing. Indianapolis: J. Wiley & Sons.
- Megan Werner. (2011) Model making. New York: Princeton Architectural Press.

Editado el 6/10/17 5 / 5