

Programa de Asignatura Mecánica de Sólidos

A. Antecedentes Generales

1.	Unidad Académica	Facultad de Ingeniería – Universidad del Desarrollo						
2.	Carrera	Ingeniería Civil en Obras Civiles						
3.	Código	IIF313B						
4.	Ubicación en la malla	Semestre V, año III						
5.	Créditos	10						
6.	Tipo de asignatura	Obligatorio	Х	Electivo	Optativo			
7.	Duración	Bimestral		Semestral	Х	Anual		
8.	Módulos semanales	Clases Teóricas	2	Clases Prácticas	Ayudantía 1			
9.	Horas académicas	Clases	68	Ayudantía 34				
10.	. Pre-requisito	Estática				1		

B. Aporte al Perfil de Egreso

Mecánica de Sólidos, perteneciente al ciclo de Licenciatura en Ciencias de la Ingeniería, está diseñado para que el estudiante analice cuerpos y sistemas estructurales deformables en condición de equilibrio estático con vinculación isoestática o hiperestática.

Esta asignatura, está dirigida a estudiantes que continúan con su proceso de formación en la temática del análisis y diseño de estructuras. Al finalizar el curso los estudiantes podrán determinar reacciones de vinculo, esfuerzos internos, tensiones, deformaciones unitarias y desplazamientos bajo distintos patrones de carga, mediante la imposición de las condiciones de equilibrio, las relaciones tensión-deformación unitaria y la compatibilidad geométrica. El curso considera cinco unidades: Introducción al análisis de tensiones y deformaciones, elementos sometidos a carga axial, elementos sometidos a torsión, elementos sometidos a flexión-corte y análisis de tensión-deformación unitaria. Además, de los conocimientos técnicos se busca desarrollar en los estudiantes las competencias genéricas de visión analítica y las competencias específicas de modelamiento matemático y diseño estructural.

C. Competencias y Resultados de Aprendizaje Generales que desarrolla la asignatura

Competencias Genéricas	Resultados de Aprendizaje Generales				
Visión Analítica	Aplica las ecuaciones de equilibrio estático,				
Competencias Específicas	las relaciones tensión – deformación unitaria y las condiciones de compatibilidad				
Modelamiento matemático	geométrica en el cálculo de tensiones y deformaciones unitarias en elementos				
Diseño Estructural	estructurales deformables sometidos a cargas axiales, momentos torsores, momentos flectores y esfuerzos de corte. Analiza sistemas estructurales isostáticos o hiperestáticos simples, calculando fuerzas de reacción y esfuerzos internos.				
	Implementa soluciones basadas en el uso de herramientas computacionales para la resolución de problemas de equilibrio estático en cuerpos deformables, mediante el desarrollo de un proyecto integral.				

D. Unidades de Contenidos y Resultados de Aprendizaje

Unidades de Contenidos	Competencia	Resultados de Aprendizaje
 UNIDAD I: Introducción al análisis de tensiones y deformaciones. Tensión y deformación unitaria. Definiciones. Propiedades mecánicas de los materiales. Elasticidad, Ley de Hooke y Módulo de Poisson. 	Visión analítica. Modelamiento matemático. Diseño estructural.	Caracteriza cómo los esfuerzos internos generan tensiones y deformaciones unitarias en sistemas en equilibrio estático. Deduce adecuadamente las propiedades mecánicas de los materiales a partir de resultados de ensayos de ingeniería.
 UNIDAD II: Elementos sometidos a carga axial. Elongación bajo carga axial constante. Elongación bajo carga axial variable. Tensión y deformación unitaria bajo carga axial. Estructuras hiperestáticas 	Visión analítica. Modelamiento matemático. Diseño estructural.	Calcula tensiones y deformaciones unitarias en elementos sometidos a carga axial. Calcula esfuerzos internos y reacciones de vinculo, estudiando problemas hiperestáticos en elementos sometidos a carga axial,

UNIDAD III: Elementos sometidos a torsión		Calcula tensiones y deformaciones unitarias en elementos sometidos a
 Deformación torsional en barras circulares sometidas a torsión uniforme. Deformación torsional en barras sometidas a torsión no uniforme. Tensión y deformación unitaria en corte puro. 	Visión analítica. Modelamiento matemático. Diseño estructural.	momento torsor. Calcula esfuerzos internos y reacciones de vinculo, estudiando problemas hiperestáticos en elementos sometidos a torsión.
Estructuras hiperestáticas		
 UNIDAD IV: Elementos sometidos a flexión y corte. Curvatura en una viga. Tensiones normales en vigas. Tensiones tangenciales en vigas. Centro de corte 	Visión analítica. Modelamiento matemático. Diseño estructural.	Calcula tensiones y deformaciones unitarias en elementos sometidos a momento flector y corte. Diferencia entre las tensiones longitudinales y las tensiones tangenciales debidas, a momento flector y esfuerzo de corte, respectivamente. Determina la posición del centro de corte formulando el equilibrio torsional de la sección a partir de las tensiones tangenciales. Cuantifica la relevancia relativa de los distintos tipos de tensiones estudiados en el curso, mediante el desarrollo de un proyecto integral.
UNIDAD V: Análisis de tensión – deformación unitaria.		Calcula representaciones de tensiones y deformaciones unitarias equivalentes usando el
Tensiones principales y tensiones máximas de corte.	Visión analítica.	circulo de Mohr.
Circulo de Mohr	Modelamiento matemático. Diseño	Estudia distintos criterios de fluencia en materiales usando las tensiones principales.
	estructural.	Integra los diferentes tipos de tensiones y de deformaciones unitarias, a través del desarrollo de un proyecto integral.

E. Estrategias de Enseñanza

El curso será abordado mediante variadas estrategias metodológicas, cada una de ellas formulada sobre la base de los conocimientos y habilidades que se desea transferir y desarrollar en el estudiante, las cuales son:

- Clases expositivas, en donde el estudiante participará activamente en la profundización de conocimientos claves, ya sea mediante la lectura bibliográfica, investigación, práctica y/u otro medio que el estudiante considere relevante.
- Desarrollo de un proyecto integral donde los estudiantes aplican los conocimientos del curso en la solución de un problema de la disciplina.
- Uso de datos reales de distintos problemas relacionados con la Ingeniería Civil en Obras Civiles, por ejemplo, registros sísmicos, entre otros.

F. Estrategias de Evaluación

La asignatura es evaluada a través de las siguientes actividades sumativas, que en todos los casos contarán con una pauta de corrección con criterios claros y conocidos por los estudiantes:

- Tareas, cubriendo temas específicos del curso.
- Controles desarrollados en clase, evaluando resultados de aprendizajes específicos del curso.
- Certámenes y un examen final escrito.
- Proyecto integral, donde los estudiantes modelan/resuelven un problema de la Ingeniería Civil en Obras Civiles.

G. Recursos de Aprendizaje

Obligatoria

Gere, J., "Mecánica de materiales", Quinta Edición, Thompson Learning, 2002.

Complementaria

- Beer, F., Johnston, R., DeWolf, J., Mazurek, D., "Mecánica De Materiales", Mc Graw-Hill Education, Séptima Edición, 2017.
- Popov, E., "Introducción A La Mecánica De Sólidos", Ed. Limusa, 2001.