

Programas de Asignatura

Desarrollo de interacción física

A. Antecedentes Generales

1.	Unidad Académica	Facultad de Diseño				
2.	Carrera	Diseño				
3.	Código de la asignatura	DICF312				
4.	Ubicación en la malla	5º semestre, 3º año				
5.	Créditos	8				
6.	Tipo de asignatura	Х	Obligatorio		Electivo	Optativo
7.	Duración	17	semanas	·		
8.	Módulos semanales	1	Teóricos	1	Prácticos	Ayudantía
9.	Horas académicas	68	68 Hrs. de Clase		Hrs. de Ayudantía	
10.	Pre-requisito	Fundamentos del Diseño de Interacción				

B. Competencias de la Asignatura

	Competencias		Competencias	Competencias		Competencias
	Genéricas		de Innovación	de		Tecnológicas
	Ética	х	Creatividad	Investigación Observación y Conceptualizaci ón		Representació n y Visualización
	Emprendimiento y Liderazgo		Empatía	Herramientas Metodológicas	х	Dominio de Herramientas Tecnológicas y Procesos de
	Responsabilidad Pública		Trabajo en Equipo	Jerarquización de la Información	x	Dominio y Uso de Materiales
x	Autonomía		Persuasión	Juicio Crítico		
	Eficiencia		Pensamiento Estratégico			
	Vision Global					
	Visión Analítica					
	Comunicación					

C. Aporte al Perfil de Egreso

En este curso el estudiante soluciona problemáticas propias del diseño de interacción en sistemas físicos a través del uso de hardware y software. Incorpora conocimientos prácticos de electrónica, mecánica y física a través del desarrollo de proyectos y prototipos que incluyen diversos sensores digitales y analógicos, controladores y actuadores digitales y mecánicos.

Esta asignatura es parte al ciclo de licenciatura, enmarcada dentro de la línea de conocimientos específicos, aportando al perfil de egreso en el desarrollo de la competencia genérica Autonomía y de las competencias específicas de Creatividad, Dominio de herramientas tecnológicas y procesos de producción y Conocimiento y uso

de materiales.

D. Competencias y Resultados de Aprendizaje que desarrolla la asignatura

COMPETENCIAS GENÉRICAS	RESULTADOS DE APRENDIZAJE GENERALES
Autonomía	Estructura ideas originales que le permiten dar respuesta a oportunidades y problemas asociados a la interacción física.
COMPETENCIAS ESPECÍFICAS	RESULTADOS DE APRENDIZAJE GENERALES
 Creatividad Dominio de Herramientas Tecnológicas y Procesos de Producción Conocimiento y Uso de materiales 	 Selecciona los recursos más adecuados según los requerimientos de un proyecto y de los recursos disponibles. Integra adecuadamente las distintas tecnologías y conocimientos técnicos en la realización de una propuesta de diseño.

E. Unidades de Contenidos y Resultados de Aprendizaje

Unidades de Contenidos	Competencia	Resultados de Aprendizaje
UNIDAD I: CONTEXTO INTERACCIÓN FÍSICA (HCI) 1.1. Experiencias sensoriales 1.2. Interfaces físicas 1.3. Sistemas mecánicos	Dominio de Herramientas Tecnológicas y Procesos de Producción.	 Reflexiona sobre la interacción física y sus alcances en discusiones guiadas diferencia herramientas y procesos para el desarrollo de experiencias humano computador, por medio del análisis y discusión
UNIDAD II: DISEÑO Y COMPONENTES DE LA INTERACCIÓN FÍSICA (HCI) 2.1. Electrónica: Sensores y actuadores 2.2. Microcontroladores 2.3. Programación	 Autonomía Dominio de Herramientas Tecnológicas y Procesos de Producción. Conocimiento y uso de materiales. 	 Distingue los componentes de los sistemas involucrados en el desarrollo de interacciones físicas, a través de ejercicios prácticos Analiza propuestas de diseño en relación a su factibilidad y viabilidad tecnológica, por medio de casos de estudio
UNIDAD III: PROTOTIPADO Y FABRICACIÓN 3.1. Integración 3.2. Prototipado y fabricación digital	 Autonomía Creatividad. Dominio de Herramientas Tecnológicas y Procesos de Producción. Conocimiento y uso de materiales. 	 Estructura las partes de un proyecto de tal manera que logran conformarse como un sistema. Realiza un prototipo funcional y original de la propuesta de diseño.

F. Estrategias de Enseñanza

En la formación basada en competencias el proceso de enseñanza-aprendizaje se enfoca en el desarrollo de conocimientos, habilidades y destrezas, y en su aplicación a la resolución de problemas similares a los que un profesional debe enfrentar en el mundo del trabajo. Requiere:

- Lograr profundidad en el conocimiento
- Promover pensamiento de orden superior, como análisis, síntesis, aplicación, evaluación, resolución de problemas.
- Diseñar experiencias de aprendizaje activo (práctico), contextualizado (enfrentar situaciones reales), social (en interacción con otros) y reflexivo (evaluar el propio aprendizaje y generar estrategias para mejorar).
- Implementar estrategias de enseñanza variadas y auténticas (similares a las que se encuentran en el mundo del trabajo).

Diseño UDD ha definido un conjunto de metodologías de enseñanza que ofrecen una amplia gama de posibilidades para promover aprendizajes efectivos y relevantes en los estudiantes. Para esta asignatura se sugiere dar prioridad a las siguientes estrategias:

- Clase expositiva
- Esquemas y organizadores gráficos
- Ejercicio práctico
- Bitácora

- Portafolio
- Presentación oral y/o de proyectos
- Aprendizaje basado en problemas / proyectos / desafíos
- Desarrollo de proyectos tecnológicos.

G. Estrategias de Evaluación

La evaluación debe estar presente a lo largo de todo el semestre o bimestre, ya sea para identificar los conocimientos previos de los alumnos (evaluación diagnóstica), monitorear la efectividad del proceso de enseñanza-aprendizaje (evaluación formativa), verificar el nivel de logro de los resultados de aprendizaje y calificar el desempeño de los estudiantes (evaluación sumativa).

- Los procedimientos de evaluación permiten evidenciar el desempeño de los alumnos a través de la elaboración de distintos tipos de documentos o productos (textos escritos, presentaciones orales, pruebas, propuestas formales en soportes bi y tridimensionales, audiovisuales, desarrollo de proyectos, etc.). El profesor debe privilegiar aquellos que permitan integrar conocimientos y aplicarlos en función de resolver situaciones auténticas (similares a las que aborda un diseñador profesional). Se promueven evaluaciones que permitan evidenciar el uso/dominio de herramientas tecnológicas propias de la disciplina y la profesión. Se deben utilizar al menos 2 procedimientos de evaluación diferentes a lo largo del curso, de manera de abordar diferentes complejidades y profundidades de conocimiento.
- Los instrumentos de evaluación permiten analizar la producción de los alumnos, mediante criterios claros, transparentes y objetivos; verificar en qué medida se cumplen los resultados de aprendizaje y cuantificar el nivel de logro a través de un puntaje y una nota. Dependiendo del tipo de contenido, se sugiere utilizar: listas de cotejo, escala de valoración o rúbrica. El instrumento de evaluación debe ser entregado al alumno junto con los criterios de evaluación, a lo menos un mes antes de su aplicación.

Instancias de evaluación:

Se deberán realizar al menos 4 evaluaciones calificadas durante el semestre, que en su totalidad podrán:

- Sumar el 100% de la Nota de Presentación a Examen, donde a su vez ésta equivaldrá al 70% de la nota final de la asignatura. Dejando 30% para el Examen Final.
- Sumar el 70% como promedio de la asignatura previo al Examen, dejando 30% para el Examen Final.

Ninguna evaluación por sí sola podrá ponderar más del 25% de la nota total del curso.

Examen Final:

Se realizará un examen final, con una ponderación del 30% de la nota total del curso. La fecha de esta evaluación será fijada por el Calendario Académico de la Facultad de forma semestral.

A criterio de la Facultad de Diseño, se podrán establecer comisiones revisoras para calificar el examen final. En dicho caso, las calificaciones emitidas por estas comisiones equivaldrá al 70% de la nota del examen y el 30% restante será determinado por el o los profesores del curso.

H. Recursos de Aprendizaje

Bibliografía Obligatoria:

- Platt, C. (2015). Make: Electronics: Learning Through Discovery. Maker Media, Inc. 2nd edition.
- Banzi, M. (2014). Banzi, M. Getting Started with Arduino: The Open Source Electronics Prototyping Platform (Make) 3rd Edition. Maker Media, Inc.
- Shedroff, N. (2012). Make it so: interaction design lessons from science fiction. New York: Rosenfeld Media
- Moggridge, B. (2007). Designing interactions. Cambridge: MIT Press

Bibliografía Complementaria:

• Scherz, P. (2016). Practical Electronics for Inventors, Fourth Edition. McGraw-Hill Education TAB

- Monk, S. (2016). Programming Arduino: Getting Started with Sketches, Second Edition (Tob) 2nd Edition.
 McGraw-Hill Education TAB
- Shedroff, N. (2001). Experience design 1. Indianapolis: News Reader
- Tognazzini, B. (1996). Tog on interface. Boston: Addison Wesley
- Norman, D. (2010). El diseño de los objetos del futuro: la interacción entre el hombre y la máquina.
 Barcelona: Paidós
- Pratt, A. (2012). *Interactive design : an introduction to the theory and application of user-centered design*. Beverly, MA: Rockport Publishers
- Shedroff, N. (1994). Information Interaction Design: A unified field of theory of design [en línea]. Fecha de consulta: 10 de agosto de 2016. Disponible en http://nathan.com/information-interaction-design-a- unified-field-theory-of-design/
- Zurain, Z, Nakata, K. (2011). Information Fields in Context-based Activity Design. ICSO 2011: The 13th International Conference on Informatics and Semiotics in Organisations: Problems and Possibilities of Computational Humanities. Leeuwarden, The Netherlands. Recuperado: 12 Agosto de 2014, desde http://www.academia.edu/2008396/Information Fields in Context-based Activity Design
- Lwgren, J. ()2004). Thoughtful interaction design: a design perspective on information technology. Cambridge: MIT Press.